skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tedder, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Ecosystems are experiencing changing global patterns of mean annual precipitation (MAP) and enrichment with multiple nutrients that potentially colimit plant biomass production. In grasslands, mean aboveground plant biomass is closely related to MAP, but how this relationship changes after enrichment with multiple nutrients remains unclear. We hypothesized the global biomass–MAP relationship becomes steeper with an increasing number of added nutrients, with increases in steepness corresponding to the form of interaction among added nutrients and with increased mediation by changes in plant community diversity. We measured aboveground plant biomass production and species diversity in 71 grasslands on six continents representing the global span of grassland MAP, diversity, management, and soils. We fertilized all sites with nitrogen, phosphorus, and potassium with micronutrients in all combinations to identify which nutrients limited biomass at each site. As hypothesized, fertilizing with one, two, or three nutrients progressively steepened the global biomass–MAP relationship. The magnitude of the increase in steepness corresponded to whether sites were not limited by nitrogen or phosphorus, were limited by either one, or were colimited by both in additive, or synergistic forms. Unexpectedly, we found only weak evidence for mediation of biomass–MAP relationships by plant community diversity because relationships of species richness, evenness, and beta diversity to MAP and to biomass were weak or opposing. Site-level properties including baseline biomass production, soils, and management explained little variation in biomass–MAP relationships. These findings reveal multiple nutrient colimitation as a defining feature of the global grassland biomass–MAP relationship. 
    more » « less
    Free, publicly-accessible full text available April 15, 2026
  3. Abstract Nutrient enrichment typically causes local plant diversity declines. A common but untested expectation is that nutrient enrichment also reduces variation in nutrient conditions among localities and selects for a smaller pool of species, causing greater diversity declines at larger than local scales and thus biotic homogenization. Here we apply a framework that links changes in species richness across scales to changes in the numbers of spatially restricted and widespread species for a standardized nutrient addition experiment across 72 grasslands on six continents. Overall, we find proportionally similar species loss at local and larger scales, suggesting similar declines of spatially restricted and widespread species, and no biotic homogenization after 4 years and up to 14 years of treatment. These patterns of diversity changes are generally consistent across species groups. Thus, nutrient enrichment poses threats to plant diversity, including for widespread species that are often critical for ecosystem functions. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  4. Abstract Background and aims The amount of nitrogen (N) derived from symbiotic N 2 fixation by legumes in grasslands might be affected by anthropogenic N and phosphorus (P) inputs, but the underlying mechanisms are not known. Methods We evaluated symbiotic N 2 fixation in 17 natural and semi-natural grasslands on four continents that are subjected to the same full-factorial N and P addition experiment, using the 15 N natural abundance method. Results N as well as combined N and P (NP) addition reduced aboveground legume biomass by 65% and 45%, respectively, compared to the control, whereas P addition had no significant impact. Addition of N and/or P had no significant effect on the symbiotic N 2 fixation per unit legume biomass. In consequence, the amount of N fixed annually per grassland area was less than half in the N addition treatments compared to control and P addition, irrespective of whether the dominant legumes were annuals or perennials. Conclusion Our results reveal that N addition mainly impacts symbiotic N 2 fixation via reduced biomass of legumes rather than changes in N 2 fixation per unit legume biomass. The results show that soil N enrichment by anthropogenic activities significantly reduces N 2 fixation in grasslands, and these effects cannot be reversed by additional P amendment. 
    more » « less
  5. As droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases. We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., ≤1-in-100-year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme. 
    more » « less
    Free, publicly-accessible full text available October 16, 2026
  6. Abstract Nutrient enrichment impacts grassland plant diversity such as species richness, functional trait composition and diversity, but whether and how these changes affect ecosystem stability in the face of increasing climate extremes remains largely unknown.We quantified the direct and diversity‐mediated effects of nutrient addition (by nitrogen, phosphorus, and potassium) on the stability of above‐ground biomass production in 10 long‐term grassland experimental sites. We measured five facets of stability as the temporal invariability, resistance during and recovery after extreme dry and wet growing seasons.Leaf traits (leaf carbon, nitrogen, phosphorus, potassium, and specific leaf area) were measured under ambient and nutrient addition conditions in the field and were used to construct the leaf economic spectrum (LES). We calculated functional trait composition and diversity of LES and of single leaf traits. We quantified the contribution of intraspecific trait shifts and species replacement to change in functional trait composition as responses to nutrient addition and its implications for ecosystem stability.Nutrient addition decreased functional trait diversity and drove grassland communities to the faster end of the LES primarily through intraspecific trait shifts, suggesting that intraspecific trait shifts should be included for accurately predicting ecosystem stability. Moreover, the change in functional trait diversity of the LES in turn influenced different facets of stability. That said, these diversity‐mediated effects were overall weak and/or overwhelmed by the direct effects of nutrient addition on stability. As a result, nutrient addition did not strongly impact any of the stability facets. These results were generally consistent using individual leaf traits but the dominant pathways differed. Importantly, major influencing pathways differed using average trait values extracted from global trait databases (e.g. TRY).Synthesis. Investigating changes in multiple facets of plant diversity and their impacts on multidimensional stability under global changes such as nutrient enrichment can improve our understanding of the processes and mechanisms maintaining ecosystem stability. 
    more » « less
  7. Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought. 
    more » « less
  8. Abstract Dominance often indicates one or a few species being best suited for resource capture and retention in a given environment. Press perturbations that change availability of limiting resources can restructure competitive hierarchies, allowing new species to capture or retain resources and leaving once dominant species fated to decline. However, dominant species may maintain high abundances even when their new environments no longer favour them due to stochastic processes associated with their high abundance, impeding deterministic processes that would otherwise diminish them.Here, we quantify the persistence of dominance by tracking the rate of decline in dominant species at 90 globally distributed grassland sites under experimentally elevated soil nutrient supply and reduced vertebrate consumer pressure.We found that chronic experimental nutrient addition and vertebrate exclusion caused certain subsets of species to lose dominance more quickly than in control plots. In control plots, perennial species and species with high initial cover maintained dominance for longer than annual species and those with low initial cover respectively. In fertilized plots, species with high initial cover maintained dominance at similar rates to control plots, while those with lower initial cover lost dominance even faster than similar species in controls. High initial cover increased the estimated time to dominance loss more strongly in plots with vertebrate exclosures than in controls. Vertebrate exclosures caused a slight decrease in the persistence of dominance for perennials, while fertilization brought perennials' rate of dominance loss in line with those of annuals. Annual species lost dominance at similar rates regardless of treatments.Synthesis.Collectively, these results point to a strong role of a species' historical abundance in maintaining dominance following environmental perturbations. Because dominant species play an outsized role in driving ecosystem processes, their ability to remain dominant—regardless of environmental conditions—is critical to anticipating expected rates of change in the structure and function of grasslands. Species that maintain dominance while no longer competitively favoured following press perturbations due to their historical abundances may result in community compositions that do not maximize resource capture, a key process of system responses to global change. 
    more » « less